
ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (157-163), Month: January - March 2015, Available at: www.researchpublish.com

Page | 157
Research Publish Journals

Customized Stream Query Scheduling In

Parallel Database System

1
Mr. Niraj Kumar,

2
Mr. Mahadeo Prasad,

3
Mr. Rajesh Singh

1,2,3
Assistant Professor, Department of Computer Science & Engineering,

RTC Institute of Technology, Anandi, Ormanjhi, Ranchi (Jharkhand), India

Abstract: The growth of World Wide Web requires large database the organizations are using large volume of

data. A number of commercial and research systems application required power and scalability of parallel query

processing. Web-based applications, such as e-commerce sites, are faced with highly changeable workloads. The

number of customers browsing and purchasing items varies through-out the day and business managers can

further complicate the workload by requesting complex reports on sales data. This means the load on a database

system can vary considerably with a sudden arrival of requests or a request involving a complex query. If there are

too many requests operating in the DBMS concurrently, then resources are stressed and performance drops. To

keep the DBMS's performance consistent across varying loads, a load control system can be used. We focus on

scheduling of queries for parallel database systems by dividing the workload into batches. We propose scheduling

algorithms which exploit the common operations within the queries in a batch. One scheduling algorithm cannot

optimally meet an arbitrary set of Quality of Service (QoS) requirements. Therefore, to meet unique features of

specific monitoring applications, an adaptive strategy selector guidable by QoS requirements was developed. The

adaptive algorithm is general, being able to use any scheduling algorithm and to react to any combination of

quality of service preferences.

1. INTRODUCTION

Database Management Systems (DBMSs) are the primary tools used for storing and accessing data and they are the

backbone of many applications. A single DBMS can receive many concurrent requests which it must handle. The type of

requests a database receives, also called the workload, can vary. These two situations represent the two fundamental

database workload types: online transaction processing (OLTP) and online analytical processing (OLAP)|also referred to

as Business Intelligence (BI). An OLTP workload is characterized by many short transactions and numerous updates. For

instance, an update of an inventory number is quick and needs to only touch a very small amount of data. OLAP

workloads on the other hand, usually consist of longer, more resource intensive queries. They tend to require reading large

amounts of data and more complex processing (sorting, finding the maximum, calculating totals). Certainly, these

workloads are not always distinct and it is possible to have both OLTP and OLAP type requests acting on a single

database. Since a database has limited physical resources such as CPU and memory, there is a limit to the number of

requests it can process concurrently. Too many concurrent requests lead to resource contention, which can cause the

performance of the database to drop drastically. The number of requests that a database is able to handle depends on a

variety of factors such as the system hardware, the system configuration and the workload.

2. MOTIVATION

Controlling load on a DBMS is not an easy task since not all requests are equal in the amount of resources they require.

Setting a static limit for the total number of requests that are allowed to execute may work well if requests are relatively

equal in their resource requirements, but will lead to suboptimal performance if the requests are extremely varied, for

instance, a mix of OLTP and OLAP queries. Beyond the amount of resource demand, queries can also differ in the type of

resources they require. For instance, I/O intensive queries primarily read data, CPU intensive queries require a lot of

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (157-163), Month: January - March 2015, Available at: www.researchpublish.com

Page | 158
Research Publish Journals

calculations, and memory intensive queries may store many partial results. If the mix of queries being executed is not

balanced, then one resource may be overloaded while others are idle. A load control system should be able to effectively

handle all of these factors and adapt to current conditions. DBMS has to be able to manage these complex queries at any

time and be able to perform optimally no matter what type, or how many queries are presented.

3. RESEARCH STATEMENT

The objective of our research is to investigate the feasibility of a database load control system based on regulating

individual resource consumption in a predictive manner. A significant difference between our work and previous

proposals is that compile time optimization techniques tend to ignore issues of resource allocation. We focus on

scheduling of queries for parallel database systems by dividing the workload into batches. In general, a customized system

is a system that changes its behavior in response to a changing environment with the goal of improving performance

[4].The adaptive scheduler selector will periodically evaluate the current scheduling algorithm’s performance for the

administration-specified QoS requirements and compare this with the other candidate algorithms’ performance. This

qualitative comparison is based upon assigning a fitness score [13] to each algorithm that captures how well it performed

in several metrics, such as throughput, memory size, and output rate.

4. DATABASE LOAD CONTROL SYSTEM

Load control in a database system can be achieved through admission control and scheduling. Admission control limits

the number of queries that can enter the system to avoid resource contention. Scheduling, with respect to load control,

means selecting which queries to execute so that resource contention is minimal. Several load control approaches that

focus on controlling resource contention are presented in the following subsections. Other approaches, such as the work

by Niu et al. [14] and Brown et al. [15] focus on attaining service level objectives (SLOs) for different groups of queries

by controlling access to physical resources.

4.1 Load Control Balancing:

The goal of a load control system is to keep a database system running efficiently, even under heavy and variable loads.

This can be achieved through a variety of methods. We approach the problem of load control by considering the demand

on individual resources. A DBMS has limited physical resources and excess demand on these resources can lead to poor

performance. Therefore, resource demand should be regulated. We study the feasibility of this kind of load control

approach by focusing on the sort heap as a resource. We have implemented a prototype load control system which

schedules queries according to their sort heap requirements. Three different scheduling methods are proposed. Each of

these scheduling methods acts as a gate-keeping mechanism, only executing those queries whose sort heap requirement fit

into the currently available sort heap space. When more than the available amount of sort heap is demanded, sort heap

contention arises. This means that the amount of sort heap space that some of the queries are allowed to use is less than

the amount required by the query. This leads to slower execution time. Without enough sort heap memory, partial results

of a sort or hash-join may have to be written to disk, which is a costly operation. Hence, the goal of our load control

system is to limit the number of concurrently running queries. So that their combined sort heap requirement does not

exceed sort heap space.

4.2 Basic Schedulers:

Three scheduling methods are proposed:

Blocking Queue Scheduler (BQS):

The Blocking Queue Scheduler's functionality consists solely of gate keeping. All the queries that enter the

system are put in a queue in the order they arrived. The query at the front of the queue is only executed if there is

enough sort heap space for it. It follows a first-in-first-out (FIFO) policy. If there is not enough space, the

scheduler waits until enough space is available. The advantages of this scheduler are that it is very simple to

implement, there is very little overhead, and the issue of starvation| when a query is never executed |is avoided.

The main disadvantage is that it is not flexible in terms of being able to pick which query runs next. There may

be a query in the queue for which there is enough sort heap space available, but it cannot be run until it is at the

front of the queue.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (157-163), Month: January - March 2015, Available at: www.researchpublish.com

Page | 159
Research Publish Journals

Smallest" Job First Scheduler (SJFS):

An alternative to the FIFO policy is a shortest-job-first policy. We modify this policy to a smallest-job-first

policy. This means ordering the incoming queries by their sort heap requirements from smallest to largest and

then performing gate keeping just like the Blocking Queue Scheduler. The advantage of this approach is that if a

query fits into the currently available sort heap, it will be allowed to run. However, this type of scheduling

induces more overhead than BQS since the waiting queries need to be sorted. Also, there is the risk of starvation

since queries are re-ordered when new ones arrive.

First Fit Scheduler (FFS):

The First Fit Scheduler keeps a list of all the queries that have been submitted to the system in the order they were submitted. It

traverses through this list until a query whose sort heap requirement is less than or equal to the currently available sort heap space

is found. Once found, the query is executed and removed from the list. Then, the search for the next query to execute is repeated

from the beginning of the list. A first-fit approach was chosen rather than a best-fit since the available sort heap space is constantly

changing; by the time the best-fit query is found, it may no longer be the best fit. Therefore, the extra overhead involved in

finding the best fit brings little benefit.

The advantage of this scheduler is that, like SJFS, if there is a query for which there is enough sort heap space, it will be

executed. However, FFS is more likely to run a balanced mix of queries than SJFS, since queries of all sizes are considered for

execution, not just the one requiring the least sort heap. Nevertheless, of all the proposed schedulers, FFS is the one that requires

the largest overhead since the list of waiting queries is constantly traversed. This is not a problem as long as long as the list of

waiting queries is small. However, under very heavy loads the waiting query list could get very long. In these cases, overhead

could be reduced by only considering the first n queries in the list. This way, the overhead of searching for the next query to

execute is constant, no matter how heavy the workload. FFS is also susceptible to starvation. In order to assess the effectiveness of

each of the proposed scheduling methods, a prototype external load control system was implemented. An overview of this system is

shown in Figure 1. However, this overhead of maintaining the query queue is minimal when compared to the overhead of retrieving

the query plans.

5. BATCH SCHEDULING SYSTEM

We assume that the workload for the database system consists of batches of queries and that each query is composed of several

operators. In addition, there is a partial order defined on the operators in a query. For example, the probe phase of a hash join

operator cannot begin until the build phase has completed. There are several ways in which the operators from different queries can

be combined into a single schedule. The aim of our scheduling algorithms is to find the global schedule for all queries that

minimizes the total execution time for a batch of queries without violating the partial order constraints. All the algorithms operate

on a query graph defined on the queries in a batch. The nodes of this graph are the relations accessed by at least one query.

There exists an edge from node Ri to node Rj for every query Q that references relations i and j. A batch of queries defines a graph

which is a collection of disjoint connected sub graphs. Each sub graph represents a subset of the queries in the batch which share

some relation with other queries in the same sub graph. Consequently, sharing of operators is possible only within a connected sub

graph. Figure 2 shows an example of a query graph for a batch of 7 queries divided into 3 sub graphs.

Figure 1: Architecture of the Load Control System

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (157-163), Month: January - March 2015, Available at: www.researchpublish.com

Page | 160
Research Publish Journals

Figure 2: Simple query graph

5.1 Batch Computing:

Batch computing refers to a system of computing in which a user does not directly dispatch programs interactively for

execution but rather delegates this responsibility to a batch scheduling system. The batch scheduler then in turn dispatches

the programs for execution, monitors their status, and returns their output upon completion to

the user. Although batch schedulers are typically software programs themselves, and we will refer to them as such in this

dissertation, this is not necessarily the case; in fact, in the early days of card reading computers, the “batch scheduler” was

often a human operator responsible for feeding cards into a computer [8].

Due to this separation between the user and the programs, batch computing is neither generally well-suited nor designed

for applications which require frequent interactions with the users. More appropriate are long running programs that do

not require user input after initialization. Batch schedulers are appreciated by users because they assume the drudgery of

program dispatching and monitoring and free the user for more creative endeavors. In addition to being useful for

executing and monitoring long running programs, batch schedulers are useful when users have multiple programs to

execute. Here again, batch schedulers can assume the drudgery and the time-consuming process of dispatching, monitor,

and collecting the output of these multiple programs.

Finally, batch schedulers are extremely useful in distributed computational settings where they can dispatch multiple

programs in parallel across multiple computational resources. In such a case, in addition to its other duties of dispatching,

monitoring, and collecting output, the batch scheduler is also responsible for monitoring a collection of computational

resources and implementing a scheme for matching computational resources with the programs that need them.

6. ADAPTIVE SCHEDULING

There are several scheduling algorithms for execution scheduling of query operators. The Execution Engine will ask a

scheduler to choose the next operator to run and to determine its workload. After the operator is run, the controller may

decide to choose another scheduling algorithm if it deems the current algorithm is not meeting the user’s QoS

requirements for execution behavior. There is a growing trend to provide parallel scientific computation services through

the web interface, especially for computation- and data-intensive tasks such as scientific database queries, data mining,

and visualization. Rather than having users download large volumes of shared data and run stand-alone applications,

scientific web services allow them to perform common data processing/ analysis tasks through intuitive web interfaces.

For example, an online bio-sequence search service can be viewed as the equivalent of web search engine in the

bioinformatics world.

A scheduling algorithm is responsible for two tasks: choosing the operator to run next and assigning a workload to that

operator. The next operator decision depends on the algorithm itself while the workload assignment is often fixed

regardless of the scheduler. In Raindrop, the workload assignment is controlled by two administrator-defined parameters.

The first parameter, RATIO, is the ratio of tuples that an operator should dequeues relative to the total number tuples

available. Currently this ratio is fixed for each strategy, but future work could adapt this depending on statistics. The

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (157-163), Month: January - March 2015, Available at: www.researchpublish.com

Page | 161
Research Publish Journals

second parameter, THRESHOLD, aids in calculating how much work to assign to an operator. It aims to reduce the

chances that an operator is underutilized by setting a limit for when to use the RATIO and when to use the total number of

tuples available. Illustrates the intuition by Pseudo code for determining operator workload.

N = the number of tuples in operator O’s input queue A = N x RATIO

if A > THRESHOLD

Then O dequeues A tuples.

Else

Then O dequeues N tuples

We now describe several scheduling strategies employed by our adaptive scheduling framework, and explain their

advantages and disadvantages.

6.1 Round Robin:

Round Robin (RR) is perhaps the most basic scheduling algorithm. It works by placing all run able operators in a circular

queue and allocating a fixed time slice to each. Round Robin’s best quality is the avoidance of starvation. An operator is

guaranteed to be scheduled within a fixed period of time. In fact, as long as an operator always has worked to do,

no operator will be run more times than any other. However, Round Robin does not adapt at all to changing stream

conditions. It also does not consider many possibly important factors, such as an operator’s performance relative to other

operators, size of the input queues, or the selectivity. Therefore, the intermediate queue sizes can grow rapidly be-

cause RR may spend its time running other operators that have less work to do or are less favorable for other reasons.

6.2 FIFO:

FIFO (first in first out) chooses a leaf operator to execute and attempts to push its tuples through the system as far as

possible. FIFO typically yields a consistent throughput, because it tries to execute older tuples until completion before it

considers newly arrived tuples. But it has the same drawbacks as Round Robin - no addictiveness and no consideration of

operator properties.

6.3 Greedy:

Greedy scheduling assigns a priority to each operator and always tries to run the operator with the highest priority. the

operator with the highest priority has no work to do (i.e. empty input queues), Greedy will choose the next highest

priority. The priority, calculated dynamically, was originally shown in [3]. Greedy eliminates some of the drawbacks of

Round Robin because it considers the cost of each operator before choosing which operator to run. However, it is prone to

starvation. If the high priority operator, O, is proceeded by lower priority operators,

6.4 Most Tuples in Queue:

The Most Tuples in Queue (MTIQ) scheduler is a greedy algorithm that assigns a priority to each operator equivalent to

the number of the tuples in its input queues. MTIQ is a simplified batch scheduler similar to [5]. Batch schedulers work

under the assumption that the average tuple processing cost can be reduced if an operator works on more tuples at a time.

Operators typically have a start-up cost associated with their execution and the batch scheduler can amortize this cost over

a larger group of tuples. Round Robin and FIFO do not have this property and thus those algorithms tend to under-utilize

operators. Second, MTIQ tends to have a burst output pattern. Typically it takes a relatively long period of time for

enough tuples to make it through the system such that the root operator has more work to do than the operators below it.

However, when the root operator runs, it then will output a large block of tuples. Some tuples will experience little delay

while others will be enquired for long periods of time, but on average, the mean delay will not be much worse than the

other algorithms. The most obvious advantage is that MTIQ works well at minimizing memory consumption. By running

the operator with the most tuples enqueued, the algorithm will have a better chance than the previous algorithms at

ensuring that no queue will grow unbounded. If the data arrives faster than MTIQ can process it, then that queue will

grow infinite in size.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (157-163), Month: January - March 2015, Available at: www.researchpublish.com

Page | 162
Research Publish Journals

Algorithm Advantages Disadvantages

Round

Robin

Guarantee that every operator is

scheduled

Over time poor output rate

FIFO Schedules operator with the same

frequency

Output tuples sooner and at a constant rate

Queue size grow quickly

Output rate is low

Does not utilize operator as fully as gready

MTTQ Queue sizes are smaller

Higher output rate

Fully utilizes operators

Brusly output pattern

Tuples takes long time in the system

7. CONCLUSIONS

As DBMS workloads are becoming more complex, effective load management systems are needed. Resource-aware load

management systems are one way to handle the varying resource requirements of queries. The objective of this thesis is to

investigate the feasibility of a database load control system based on regulating resource consumption in a predictive

manner.

This Paper addressed the issues relating to creating an adaptive execution strategy for the execution of a continuous query

over streaming data. The proposed adaptive strategy chooses the next scheduling algorithm to utilize among several

candidate algorithms based on their performance thus far relative to the user’s quality of service requirements. We also

showed that the user’s service preferences do in fact have an effect on the behavior of the adaptive algorithm. In our

study, the adaptive algorithm that was optimized for a given metric outperformed the other adaptive algorithm that was

optimized for an other metric. This is an important conclusion because it shows that the adaptive algorithm behaves

intelligently and does not win simply because it combines the other algorithms. Given the presence of a single algorithm

that optimally met the requirement, the adaptive strategy chose that algorithm more than the other. When the adaptive

algorithm periodically switched to one of the other candidates for exploratory purposes, the additive’s overall

performance decreased. Thus, the adaptive was never able to outperform that single strategy.

8. FUTURE WORK

There are many future topics to investigate based on the preliminary results produced By this Paper. The first direction

involves augmenting the experimental study with additional data distributions and more complex query plans. Another

direction involves tweaking the various experiment parameters. Further testing to find the optimal values for the weight

to give to old values for weighted average, workload ratio, and frequency of updating statistics should result in improved

performance. The adaptive strategy can be further tweaked by altering the data decay and algorithm switch parameters or

by running multiple operators at the same time. Another direction involves investigating incorporating alternate adaptive

techniques such as those used in [5][9]. Combining these techniques with the adaptive scheduling strategy yields an

interesting research question - could we find a formula to weigh the benefits of one technique over the other and always

choose the adaptive technique that will meet the user’s quality of service best.

REFERENCES

[1] I. T. Archive. http://www.acm.org/sigcomm/ita/, 2003.

[2] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing. In SIGMOD Conference 2000,

pages 261-272, 2000.

[3] B. Babcock, S. Babu, M. Datar, and R. Motwan. Chain: Operator scheduling for memory minimization in data

stream systems. In Proc. of SIGMOD 2003, pages 253-264, 2003.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. In

Proceedings of 21st ACM Symposium on Principles of Database Systems (PODS 2002), pages 1-16, 2002.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (157-163), Month: January - March 2015, Available at: www.researchpublish.com

Page | 163
Research Publish Journals

[5] D. Carney, U. Cetintemel, M. Cherniack, C.Convey, S. Lee, G. Seidman, M. Stone-Braker, N. Tatbul, and S.

Zdonik Monitoring streams: A new class of data management applications.In Proceedings of the 28th International

Conference on Very Large DataBases (VLDB’02), 2002.

[6] J.Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a scalable continuous query system for Internet

databases. In SIGMOD, pages 379-390, 2000.

[7] L.Golab and M. T. Ozsu. Processing sliding window multi-joins in continuous queries over data streams. In

VLDB, pages 500-511, September 2003.

[8] J. Hellerstein, M. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum, S. Madden, V. Raman, and M. Shah.

Adaptive Query Processing: Technology in Evolution. IEEE Data Engineering Bulletin, 23(2), June 2000.

[9] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An adaptive query execution system for data

integration. In Proceedings of SIGMOD, pages 299-310, 1999.

[10] N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-optimal query execution plans. In L. M.

Haas and A. Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD International Conference on

Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages 106-117. ACM Press, 1998.

[11] S. Madden and M. J. Franklin. Fjording the stream: An architecture for queries over streaming sensor data. In

ICDE, 2002.

[12] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous queries over

streams.In ACM SIGMOD Conference 2002, 2002.

[13] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1999.

[14] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[15] J. F. Naughton, D. J. DeWitt, D. Maier, et al. The Niagara internet query system. EEE Data Engineering Bulletin,

24(2):27-33, 2001.

[16] R. Motwani, J. Widom and A. Arasu et al. Query Processing, Resource Management, and Approximation in a

Data Stream Management System. In Proceedings of CIDR, pages 245-256, 2003.

[17] M. Sullivan and A. Heybey. Tribeca: A system for managing large databases of network traffic. In I Proceedings

of USENIX, 8, pages 13-24, 1998.

